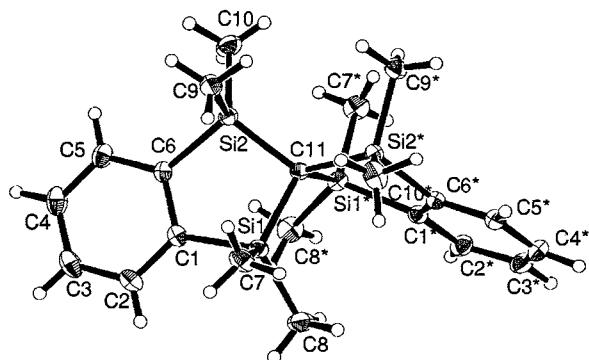

An ESR Study of a Tetrasilaspirobiindane Anion Radical. Stereoelectronic Electron-Accepting Effects of Trialkylsilyl Groups

Wataru Setaka, Chizuko Kabuto, and Mitsuo Kira*
Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578


(Received January 18, 1999; CL-990038)

ESR spectra of a tetrasilasiobiphenyl anion radical (**1**) showed a doublet of doublet hfs pattern at low temperatures and significant line-width alternation, indicating that there is remarkable difference in the electron-accepting effects between two silyl substituents at the benzene ring with the unpaired electron due to the ring conformation.

Whereas a number of ESR studies of silyl-substituted benzene anion radicals have definitely shown the electron-accepting effects of the silyl substituents,¹ the stereochemical aspects have never been investigated by this technique. An ESR study of the anion radical of tetrasilasirobiindane **1** (**1**⁻), in which two equivalent 1,2-disilylbenzenes are bound by a spirocarbon, has revealed that the unpaired electron is localized in a benzene ring but the spin distributing on the ring is remarkably different from that of 1,2-bis(trimethylsilyl)benzene **2** (**2**⁻). A doublet of doublet hfs pattern at low temperatures and line-width alternation of the ESR spectra of **1**⁻ indicate that the electronic effects of two silyl groups on the benzene ring with the unpaired electron are different from each other, due to the conformation of the two 1,3-disilacyclopentene rings. The results would be taken as the first experimental evidence for the hyperconjugative σ^* participation as the major reason for the electron-accepting ability of trialkylsilyl substituents rather than the d orbital participation.²

Tetrasilaspirobiindane **1** was synthesized by a coupling reaction of 1,2-bis(chlorodimethylsilyl)benzene with carbon tetrachloride using magnesium in 28% yield as colorless crystals.³ The molecular structure of **1** determined by X-ray crystallography is shown in Figure 1.⁴ The 1,3-disilacyclo-

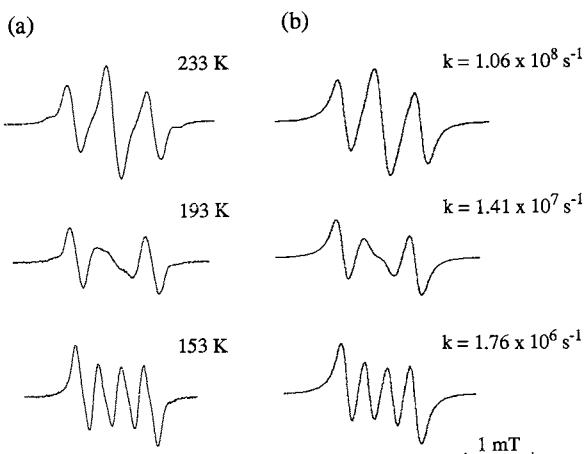


Figure 1. ORTEP drawing of tetrasilaspirobiindane **1** (30% probability): Selected bond lengths (Å): Si1–C1, 1.883(2); Si1–C7, 1.870(3); Si1–C11, 1.905(2). Selected bond angles (deg): C1–Si1–C7, 105.2(2); C1–Si1–C8, 114.7(1); C1–Si1–C11, 99.72(7); Si1–C11–Si2, 113.34(3).

pentene rings of **1** are not planar but have an envelope-like conformation, and therefore, two silyl groups attached to a benzene ring are not equivalent; the average bent angle of the envelop (angles between Si-C-C-Si and Si-C-Si planes) is 35°. However, the ^1H NMR spectrum of **1** at 154 – 303 K showed only three signals due to methyl protons on silicon and two-types of phenyl protons at δ 0.31, 7.35, and 7.53, indicating that the two silyl substituents on a benzene ring are averaged dynamically in solution through flip-flop processes among several ring conformations.

Figure 2 shows ESR spectra of 1^- , which were generated by a short contact of 1 in 2-methyltetrahydrofuran (2-MeTHF) with potassium metal at -78 °C. The ESR spectrum at 293 K showed a 1:2:1 triplet with the hfs value of 0.54 mT. Since only two protons of 1^- contribute to the splitting, it is concluded that the unpaired electron is localized in a benzene ring; there is neither significant spin delocalization over the whole molecule through spiro-conjugation nor facile electron transfer between the two benzene rings.⁵ The splitting pattern and the hfs value of 1^- at 253 K is similar to those of 1,2-bis(trimethylsilyl)benzene anion radical (2^-), which shows a 1:2:1 triplet with the hfs value of 0.523 mT.^{1b,f} The π spin distribution in 1^- as well as 2^- is calculated as 0.20 at C⁴ and C⁵ and almost zero at C³ and C⁶, using the McConnell equation, $a_{\text{H}} = Qp_{\text{C}}$, where $Q = 2.8$ mT;⁶ the unpaired electron of 1^- and 2^- resides on the antisymmetric LUMO (π_{A}^*) of 1,2-disubstituted benzene.

The splitting pattern of 1^- was remarkably temperature dependent as shown in Figure 2, while no significant change was observed in the ESR spectra of 2^- between 153 and 233 K. At temperatures below 153 K, a doublet of doublet pattern of the spectrum was observed in 1^- with the hfs values of 0.70 and

Figure 2. Temperature dependent ESR spectra of tetrasilaspriobindane anion radical 1^- in 2-MeTHF with potassium ion as a countercation: (a) experimental; (b) simulated with specified rate constants.

0.35 mT, which correspond to the spin densities of 0.250 and 0.125, at C⁴ and C⁵ (or C⁵ and C⁴), respectively. The nonequivalent spin densities at C⁴ and C⁵ will be caused by the different electron accepting ability of Si¹ and Si² at conformation **1A** in Figure 3. Actually, the π spin distribution was well reproduced by the HMO calculations using different parameters for the two silicon atoms.⁷

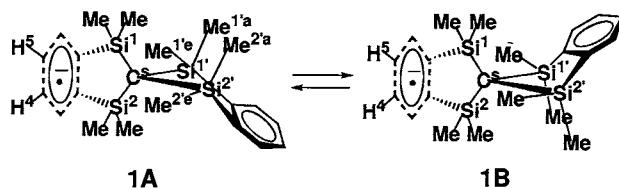
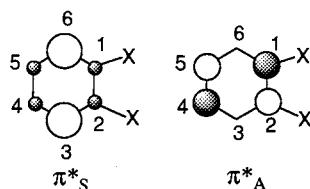
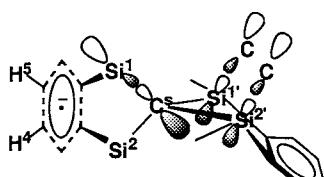




Figure 3. Ring flipping processes of 1^- .

Remarkable line-width alternation in the temperature range of 154 – 253 K will be explained in terms of the ring flipping process between **1A** and **1B** at higher temperatures. The exchange rates for the dynamic processes in 1^- are determined by comparing the experimental spectra with the simulated spectra obtained by solving the modified Bloch equations for the two-jump system.⁸ From a plot of $\ln(k/T)$ vs. $1/T$, the following activation parameters were determined: $\Delta H^\ddagger = 3.3$ kcal/mol and $\Delta S^\ddagger = 7.6$ cal mol⁻¹K⁻¹.

The above results suggest that the electron accepting ability of the two silyl substituents at the anionic benzene ring in 1^- is modified significantly by the arrangement of the alkyl-substituents on silicon atoms. An extra electron on a benzene ring is delocalized to $\sigma^*(\text{Si}^1\text{-C}^s)$ and $\sigma^*(\text{Si}^2\text{-C}^s)$ orbitals through the negative hyperconjugation, where C^s denotes the spiro carbon. Unequal electron-accepting ability between Si¹ and Si² moieties will be caused by the unequal interaction of the two σ^* orbitals with the σ^* orbitals in the other ring. Thus, at conformation **1A** in Figure 3, $\sigma^*(\text{Si}^1\text{-C}^s)$ orbital may have better overlap with $\sigma^*(\text{Si}^1\text{-Me}^{1a})$ and $\sigma^*(\text{Si}^2\text{-Me}^{2a})$ orbitals, in comparison to the overlap between $\sigma^*(\text{Si}^2\text{-C}^s)$ orbital and any σ^* orbital on Si¹ and Si²; in this case, the electron accepting ability of Si¹ will be larger than that of Si². Such remarkable stereoelectronic electron-accepting effects of a silyl-substituent are indicative of the hyperconjugative σ^* participation rather than the d orbital participation as the major origin.²

The origin of the non-equivalence of two aromatic protons and the line-width alternation in the ESR spectra of 1^- cannot be ascribed to the unsymmetrical ion pairing of 1^- with the counter-cations, because similar phenomena were observed using various solvents and alkali metals.⁹

This work was supported by the Ministry of Education, Science, Sports, and Culture of Japan (Grand-in-Aid for Scientific Research (A) No.08404042).

References and Notes

- 1 a) J. A. Bedford, J. R. Bolton, A. Carrington, and A. R. H. Prince, *Trans Faraday Soc.*, **59**, 53 (1963). b) F. Gerson, J. Heinizer, H. Bock, H. Alt, and H. Seidl, *Helv. Chim. Acta*, **51**, 707 (1968). c) H. Alt, E. R. Franke, and H. Bock, *Angew. Chem.*, **81**, 538 (1969). d) F. Gerson, J. Heinizer, and H. Bock, *Mol. Phys.*, **18**, 461 (1970). e) H. Bock and W. Kaim, *Z. Anorg. Allg. Chem.*, **459**, 103 (1979). f) H. J. Sipe, Jr. and R. West, *J. Organomet. Chem.*, **70**, 353 (1974). g) H. J. Sipe, Jr. and R. West, *J. Organomet. Chem.*, **70**, 367 (1974).
- 2 For a recent discussion on electron-accepting effects of silyl substituents, see: Y. Apeloig, in "The Chemistry of Organic Silicon Compounds," ed by S. Patai and Z. Rappoport, John Wiley, New York (1989), Part 1, Chap. 2.
- 3 1: colorless crystals; mp 169–171 °C; ^1H NMR (300 MHz, CDCl_3) δ 0.31 (s, 24 H), 7.35 (dd, $J = 5.4$ Hz, 3.3 Hz, 2 H), 7.53 (dd, $J = 5.4$ Hz, 3.3 Hz, 2 H); ^{29}Si NMR (59 MHz, CDCl_3) δ 5.4; ^{13}C NMR (75 MHz, CDCl_3) δ 3.0, 4.8, 128.2, 130.5, 151.1; MS (70 eV, EI) m/z 396 (M⁺, 0.1), 381 (M⁺⁻¹, 100), 293 (25), 73 (70); HRMS found 396.1573, calcd for $\text{C}_{21}\text{H}_{32}\text{Si}_4$ 396.1581. *Anal.* Found: C, 63.72; H, 8.03%. Calcd for $\text{C}_{21}\text{H}_{32}\text{Si}_4$: C, 63.56; H, 8.13%.
- 4 Crystal data for 1: $\text{C}_{21}\text{Si}_4\text{H}_{32}$; MW = 396.83; orthorhombic; $a = 16.638$ (4) Å, $b = 8.427$ (3) Å, $c = 16.406$ (4) Å; $V = 2300.4$ (9) Å³; space group Pbcn; $Z = 4$; $D_{\text{calcd}} = 1.146$ g/cm³. The final R and R_w factors were 0.036 and 0.037 for 2021 reflections with $F_O > 4\sigma(F_O)$.
- 5 A number of radical anions of spiro compounds having two perpendicular π systems have been investigated by ESR spectroscopy. Whether the spin delocalization occurs over the two π systems or not is dependent on the molecular structure and the generation conditions: R. D. Cowell and G. Urry, *J. Chem. Phys.*, **38**, 2028 (1963); F. Gerson, R. Gleiter, G. Moshuk, and A. S. Dreiding, *J. Am. Chem. Soc.*, **94**, 2919 (1972); F. Gerson, B. Kowert, and B. M. Peake, *J. Am. Chem. Soc.*, **96**, 118 (1974); H. Sakurai, T. Koyama, M. Kira, A. Hosomi, and Y. Nakadaira, *Tetrahedron Lett.*, **23**, 543 (1982); P. Maslak, M. P. Augustine, and J. D. Burkay, *J. Am. Chem. Soc.*, **112**, 5359 (1990); K. Ueda, M. Yamanoha, T. Sugimoto, H. Fujita, A. Ugawa, K. Yakushi, and K. Kano, *Chem. Lett.*, **1997**, 461.
- 6 H. M. McConnell, *J. Chem. Phys.*, **24**, 632 (1956).
- 7 As studied by Bock et al.^{1d} and West et al.,^{1f} experimental π spin densities of silyl-substituted benzene anion radicals are well reproduced by HMO calculations. The spin densities at C³ (C⁶) and C⁴ (C⁵) of 2⁻ are reproduced to be 0.187 and 0.003, respectively, using the following parameters: $\alpha_{\text{Si}} = \alpha - 2.0\beta$, $\beta_{\text{C-Si}} = 0.70\beta$, and $\alpha_{\text{C}} = \alpha - 0.20\beta$ at the silyl-substituted positions.^{1f} If the $\beta_{\text{C-Si}}$ parameter for C²-Si² overlap is reduced to 0.60 β with the same values for the other parameters, the spin densities at C⁴ and C⁵ are modified to be 0.242 and 0.130, respectively, while they are 0.02 and 0.003 at C³ and C⁶; these values are good in accord with the experimental spin densities.
- 8 ESREXN program is used for simulation. Heinzer, J; QCPE No.209 (1972).
- 9 In the ESR spectra of $1^- \cdot \text{Rb}^+$ in 2-MeTHF, hyperfine splittings due to ^{85}Rb ($I = 5/2$, 72%) and ^{87}Rb ($I = 3/2$, 28%) were observed, while in DME there was no coupling interaction between 1^- and Rb^+ , indicating that 1^- forms a solvent separated ion pair with Rb^+ in DME but a contact ion pair in 2-MeTHF. In both conditions, the line-width alternation due to the ring flipping process were observed in the temperature dependent ESR. The activation parameters for 1^- with Rb^+ as the counter-cation are the following: $\Delta H^\ddagger = 4.6$ and 3.5 kcal/mol and $\Delta S^\ddagger = 0.2$ and 5.5 cal mol⁻¹K⁻¹, in 2-MeTHF and DME, respectively. The higher ΔH^\ddagger value in 2-MeTHF may be explained by the larger ion-pair interaction between the π anion radical and alkali metal ion.